第1题
设序列x(n)=2δ(n+1)+δ(n)-δ(n-1),则X(ejω)|ω=0的值为______。
第2题
己知是周期为4的周期序列,且已知8点序列x(n)=,(0≤n≤7)的8点DFT系数为:X(0)=X(2)=X(4)=X(6)=1,X(k)=0,其他k.试求:
(1)周期序列,并概画出它的序列图形;
(2)该周期序列 通过单位冲激响应为的数字滤波器后的输出y(n),并概画出它的序列图形.
第3题
设x(n)为一有限长序列,当n<0和n≥N时x(n)=0,且N等于偶数.已知DFT[x(n)]=X(k),试利用X(k)来表示以下各序列的DTF.
第4题
对因果序列,初值定理是x(0)=limX(z).如果序列为n>0时x(n)=0,问相应的定理是什么?讨论一个序列x(n),其z变换为X(z)的收敛域包括单位圆,试求r(0)(序列)值。
第7题
已知序列x(n)=αnu(n),0<α<1,对x(n)的Z变换X(z)在单位圆上等间隔采样N点,采样序列为
k=0,1,…,N-1 求有限长序列IDFT[X(k)]N
第8题
27),记y(n)=h(n)x(n)(线性卷积),则y(n)为()点的序列,如果采用基2FFT算法以快速卷积的方式实现线性卷积,则FFT的点数至少为()点。
第10题
已知序列值为2、1、0、1的4点序列x[n],试计算8点序列
离散傅里叶变换Y(k),k=0,1,2,3,4,5,6,7.
第11题
列出图题1-10所示系统的差分方程,并在初始条件y(n)=0,n≥0下,求输入序列x(n)=δ(n)时的输出y(n),并图示之(提示:首先判断y(n)是左边还是右边序列)。